Publications
Modeling and simulation in validation assessment of failure predictions for high temperature pressurized pipes
Dempsey, J.F.; Romero, Vicente J.; Antoun, Bonnie R.
A unique quasi-static temperature dependent low strain rate finite element constitutive failure model has been developed at Sandia National Laboratories (Dempsey JF, Antoun B, Wellman G, Romero V, Scherzinger W (2010) Coupled thermal pressurization failure simulations with validation experiments. Presentation at ASME 2010 international mechanical engineering congress & exposition, Vancouver, 12-18 Nov 2010) and is being to be used to predict failure initiation of pressurized components at high temperature. In order to assess the accuracy of this constitutive model, validation experiments of a cylindrical stainless steel pipe, heated and pressurized to failure is performed. This "pipe bomb" is instrumented with thermocouples and a pressure sensor whereby temperatures and pressure are recorded with time until failure occurs. The pressure and thermocouple temperatures are then mapped to a finite element model of this pipe bomb. Mesh refinement and temperature mapping impacts on failure pressure prediction in support of the model validation assessment is discussed. © The Society for Experimental Mechanics Inc. 2014.