Publications
Modeling and alleviating instability in a mems vertical comb drive using a progressive linkage
Bronson, Jessica R.; Wiens, Gloria J.; Allen, James J.
Micro mirrors have emerged as key components for optical microelectromechanical system (MEMS) applications. Electrostatic vertical comb drives are attractive because they can be fabricated underneath the mirror, allowing for arrays with a high fill factor. Also, vertical comb drives are more easily controlled than parallel plate actuators, making them the better choice for analog scanning devices. The device presented in this paper is a one-degree of freedom vertical comb drive fabricated using Sandia National Laboratories SUMMiT™ five-level surface micromachining process. The electrostatic performance of the device is investigated using finite element analysis to determine the capacitance for a unit cell of the comb drive as the position of the device is varied. This information is then used to design a progressive linkage that will seek to alleviate or eliminate the effects of instability. The goal of this research is to develop an electrostatic model for the behavior of the vertical comb drive mirror and then use this to design a progressive-linkage that can delay or eliminate the pull-in instability. Copyright © 2005 by ASME.