Publications

Publications / Conference

Model validation of a structure subjected to internal blast loading

Brundage, Aaron L.; Metzinger, Kurt E.; VanGoethem, Doug; Attaway, Stephen W.

In order to predict blast damage on structures, it is current industry practice to decouple shock calculations from computational structural dynamics calculations. Pressure-time histories from experimental tests were used to assess computational models developed using a shock physics code (CTH) and a structural dynamics code (PRONTO3D). CTH was shown to be able to reproduce three independent characteristics of a blast wave: arrival time, peak overpressure, and decay time. Excellent agreement was achieved for early times, where the rigid wall assumptions used in the model analysis were valid. A one-way coupling was performed for this blast-structure interaction problem by taking the pressure-time history from the shock physics simulation and applying it to the structure at the corresponding locations in the PRONTO3D simulation to capture the structural deformation. In general, the one-way coupling was shown to be a cost-effective means of predicting the structural response when the time duration of the load was less than the response time of the structure. Therefore, the computational models were successfully evaluated for the internal blast problems studied herein.