Publications
Mixing-induced calcite precipitation and dissolution kinetics in micromodel experiments
Yoon, Hongkyu Y.; Dewers, Thomas D.
Dissolved CO2 from geological CO2 sequestration may react with dissolved minerals in fractured rocks or confined aquifers and cause mineral precipitation. The overall rate of reaction can be limited by diffusive or dispersive mixing, and mineral precipitation can block pores and further hinder these processes. Mixing-induced calcite precipitation experiments were performed by injecting solutions containing CaCl2 and Na2CO3 through two separate inlets of a micromodel (1-cm x 2-cm x 40-microns); transverse dispersion caused the two solutions to mix along the center of the micromodel, resulting in calcite precipitation. The amount of calcite precipitation initially increased to a maximum and then decreased to a steady state value. Fluorescent microscopy and imaging techniques were used to visualize calcite precipitation, and the corresponding effects on the flow field. Experimental micromodel results were evaluated with pore-scale simulations using a 2-D Lattice-Boltzmann code for water flow and a finite volume code for reactive transport. The reactive transport model included the impact of pH upon carbonate speciation and calcite dissolution. We found that proper estimation of the effective diffusion coefficient and the reaction surface area is necessary to adequately simulate precipitation and dissolution rates. The effective diffusion coefficient was decreased in grid cells where calcite precipitated, and keeping track of reactive surface over time played a significant role in predicting reaction patterns. Our results may improve understanding of the fundamental physicochemical processes during CO2 sequestration in geologic formations.