Publications
Milestone M6 Report: Reducing Excess Data Movement Part 1
Peng, Ivy P.; Voskuilen, Gwendolyn R.; Sarkar, Abhik S.; Boehme, David B.; Long, Rogelio L.; Moore, Shirley M.; Gokhale, Maya G.
This is the second in a sequence of three Hardware Evaluation milestones that provide insight into the following questions: What are the sources of excess data movement across all levels of the memory hierarchy, going out to the network fabric? What can be done at various levels of the hardware/software hierarchy to reduce excess data movement? How does reduced data movement track application performance? The results of this study can be used to suggest where the DOE supercomputing facilities, working with their hardware vendors, can optimize aspects of the system to reduce excess data movement. Quantitative analysis will also benefit systems software and applications to optimize caching and data layout strategies. Another potential avenue is to answer cost-benefit questions, such as those involving memory capacity versus latency and bandwidth. This milestone focuses on techniques to reduce data movement, quantitatively evaluates the efficacy of the techniques in accomplishing that goal, and measures how performance tracks data movement reduction. We study a small collection of benchmarks and proxy mini-apps that run on pre-exascale GPUs and on the Accelsim GPU simulator. Our approach has two thrusts: to measure advanced data movement reduction directives and techniques on the newest available GPUs, and to evaluate our benchmark set on simulated GPUs configured with architectural refinements to reduce data movement.