Publications

Publications / Journal Article

Microstructure and Cs behavior of Ba-doped aluminosilicate pollucite irradiated with F+ ions

Jiang, Weilin; Kovarik, Libor; Zhu, Zihua; Varga, Tamas; Engelhard, Mark H.; Bowden, Mark E.; Nenoff, T.M.; Garino, Terry J.

Radionuclide 137Cs is one of the major fission products that dominate heat generation in spent fuels over the first 300 years. A durable waste form for 137Cs that decays to 137Ba is needed to minimize its environmental impact. Aluminosilicate pollucite CsAlSi 2O6 is selected as a model waste form to study the decay-induced structural effects. Whereas Ba-containing precipitates are not present in charge-balanced Cs0.9Ba0.05AlSi 2O6, they are found in Cs0.9Ba 0.1AlSi2O6 and identified as monoclinic Ba 2Si3O8. Pollucite is susceptible to electron-irradiation-induced amorphization. The threshold density of electronic energy deposition for amorphization was determined to be ∼235 keV/nm 3. Pollucite can be readily amorphized under F+ ion irradiation at 673 K. A significant amount of Cs diffusion and release from the amorphized pollucite occurs during the irradiation. However, cesium is immobile in the crystalline structure under He+ ion irradiation at room temperature. The critical temperature for amorphization is not higher than 873 K under F+ ion irradiation. If kept at or above 873 K all the time, the pollucite structure is unlikely to be amorphized; Cs diffusion and release are improbable. A general discussion regarding pollucite as a potential waste form is provided in this report. © 2014 American Chemical Society.