Publications

Publications / Journal Article

Micromilling of metal alloys with focused ion beam-fabricated tools

Adams, David P.; Vasile, Michael J.; Benavides, Gilbert L.; Campbell, Ann N.

This work combines focused ion beam sputtering and ultra-precision machining as a first step in fabricating metal alloy microcomponents. Micro-end mills having ∼25 μm diameters are made by sputtering cobalt M42 high-speed steel and C2 micrograin tungsten carbide tool blanks. A 20 keV focused gallium ion beam is used to define a number of cutting edges and tool end clearance. Cutting edge radii of curvature are less than or equal to 0.1 μm. Micro-end mill tools having 2, 4 and 5 cutting edges successfully machine millimeter long trenches in 6061-T4 aluminum, brass, 4340 steel and polymethyl methacrylate. Machined trench widths are approximately equal to the tool diameters, and surface roughnesses (Ra) at the bottom of micromachined features are ∼200 nm. Microtools are robust and operate for more than 6 h without fracture. Results from ultra-precision machining aluminum alloy at feed rates as high as 50 mm/minute and an axial depth of 1.0 μm are included. © 2001 Elsevier Science Inc.