Publications

Publications / Conference

Microfluidics and microacoustics for miniature flow cytometry

Ravula, Surendra K.; Branch, Darren W.; Sigman, Jennifer; Clem, Paul G.; Kaduchak, Gregory; Brener, Igal B.

Flow cytometry is an indispensable tool in clinical diagnostics, for example in cancer, AIDS, infectious disease outbreaks, microbiology, and others. The cost and size of existing cytometers precludes their entry into field clinics, water monitoring, agriculture/veterinary diagnostics, and rapidly deployable biothreat detection. Much of the cost and footprint of conventional cytometers is dictated by the high speed achieved by cells or beads in a hydrodynamically focused stream. This constraint is removed by using ultrasonic focusing in a parallel microfluidic architecture. In this paper, we describe our progress towards a microfabricated flow cytometer that uses bulk and microfabricated planar piezoelectric transducers in glass microfluidic channels. In addition to experimental data, initial modeling data to predict the performance of our transducers are discussed.