Publications
Methodology for assessing the safety of Hydrogen Systems: HyRAM 1.0 technical reference manual
Groth, Katrina G.; Hecht, Ethan S.; Reynolds, John T.
The HyRAM software toolkit provides a basis for conducting quantitative risk assessment and consequence modeling for hydrogen infrastructure and transportation systems. HyRAM is designed to facilitate the use of state-of-the-art science and engineering models to conduct robust, repeatable assessments of hydrogen safety, hazards, and risk. HyRAM is envisioned as a unifying platform combining validated, analytical models of hydrogen behavior, a standardized, transparent QRA approach, and engineering models and generic data for hydrogen installations. HyRAM is being developed at Sandia National Laboratories for the U. S. Department of Energy to increase access to technical data about hydrogen safety and to enable the use of that data to support development and revision of national and international codes and standards. This document provides a description of the methodology and models contained in the HyRAM version 1.0. HyRAM 1.0 includes generic probabilities for hydrogen equipment failures, probabilistic models for the impact of heat flux on humans and structures, and computationally and experimentally validated analytical and first order models of hydrogen release and flame physics. HyRAM 1.0 integrates deterministic and probabilistic models for quantifying accident scenarios, predicting physical effects, and characterizing hydrogen hazards (thermal effects from jet fires, overpressure effects from deflagrations), and assessing impact on people and structures. HyRAM is a prototype software in active development and thus the models and data may change. This report will be updated at appropriate developmental intervals.