Publications
Mechanism of fusion of pathogenic enveloped viruses with the endosomal membrane
Kent, Michael S.; Carson, Bryan C.; Rempe, Susan R.; La Bauve, Sadie L.; Vanegas, Juan M.; Rogers, David M.; Vernon, Briana C.; Ricken, Bryce R.; Ye, Dongmei Y.; Moczydlowski, Edward M.; Zheng, Aihua Z.; Kielian, Margaret K.
Dengue virus is a devastating human pathogen responsible for millions of infections each year. No antiviral therapies for Dengue currently exist, making effective treatment of the virus challenging. Dengue is taken into the cell through endocytosis. Low-pH mediated structural rearrangements of the envelope protein E leads to the formation of fusogenic E trimers that facilitate membrane fusion with late endosomes. The fusion mechanism is not fully understood, but is a key target for inhibiting the viral infection pathway. An important aspect of fusion is the dependence on endosomal membrane composition, and in particular, the requirement of anionic lipids. This study aims to characterize the biophysical reasons for this dependence. The work includes experimental studies and molecular simulations of the interactions of E with lipid membranes. These approaches revealed the structure of E bound to lipid membranes including the depth of its insertion into the membrane and the average angle with respect to the membrane, the fundamental interactions involved, the dependence of adsorption and anchoring energy on membrane composition, the membrane curvature induced upon insertion, and the correlation of the above with fusion efficiency of virus like particles (VLPs) with liposomes. As a part of this work we developed a new biophysical technique to measure the energy for pulling E out of a membrane, and distinguished anchoring (pull-out) and binding energies for this nonequilibrium system. We also developed a modeling approach combining molecular and continuum approaches to provide the first theoretical estimate of the binding energy. Taken together, this work lays the foundation for developing a systematic fundamental understanding of fusion in enveloped viruses that has been elusive to date.