Publications

Publications / Journal Article

Mechanical and electrical performance of thermally stable Au-ZnO films

Schoeppner, R.L.; Goeke, Ronald S.; Moody, Neville R.; Bahr, D.F.

The mechanical properties, thermal stability, and electrical performance of Au-ZnO composite thin films are determined in this work. The co-deposition of ZnO with Au via physical vapor deposition leads to grain refinement over that of pure Au; the addition of 0.1 vol.% ZnO reduces the as-grown grain size by over 30%. The hardness of the as-grown films doubles with 2% ZnO, from 1.8 to 3.6 GPa as measured by nanoindentation. Films with ZnO additions greater than 0.5% show no significant grain growth after annealing at 350°C, while pure gold and smaller additions do exhibit grain growth and subsequent mechanical softening. Films with 1% and 2% ZnO show a decrease of approximately 50% in electrical resistivity and no change in hardness after annealing. A model accounting for both changes in the interface structure between dispersed ZnO particles and the Au matrix captures the changes in mechanical and electrical resistivity. The addition of 1-2% ZnO co-deposited with Au provides a method to create mechanically hard and thermally stable films with a resistivity less than 80 n-m. These results complement previous studies of other alloying systems, suggesting oxide dispersion strengthened (ODS) gold shows a desirable hardness-resistivity relationship that is relatively independent of the particular ODS chemistry.