Publications

Publications / Journal Article

Maximising the investment returns of a gridconnected battery considering degradation cost

Bera, Atri; Almasabi, Saleh; Tian, Yuting; Byrne, Raymond H.; Chalamala, Babu C.; Nguyen, Tu A.; Mitra, Joydeep

Energy storage systems (ESSs) are being deployed widely due to numerous benefits including operational flexibility, high ramping capability, and decreasing costs. This study investigates the economic benefits provided by battery ESSs when they are deployed for market-related applications, considering the battery degradation cost. A comprehensive investment planning framework is presented, which estimates the maximum revenue that the ESS can generate over its lifetime and provides the necessary tools to investors for aiding the decision making process regarding an ESS project. The applications chosen for this study are energy arbitrage and frequency regulation. Lithium-ion batteries are considered due to their wide popularity arising from high efficiency, high energy density, and declining costs. A new degradation cost model based on energy throughput and cycle count is developed for Lithium-ion batteries participating in electricity markets. The lifetime revenue of ESS is calculated considering battery degradation and a cost-benefit analysis is performed to provide investors with an estimate of the net present value, return on investment and payback period. The effect of considering the degradation cost on the estimated revenue is also studied. The proposed approach is demonstrated on the IEEE Reliability Test System and historical data from PJM Interconnection.