Publications
Magneto-transport analysis of an ultra-low-density two-dimensional hole gas in an undoped strained Ge/SiGe heterostructure
Laroche, D.; Huang, S.H.; Chuang, Y.; Li, J.Y.; Liu, C.W.; Lu, Tzu-Ming L.
We report the magneto-transport, scattering mechanisms, and effective mass analysis of an ultra-low density two-dimensional hole gas capacitively induced in an undoped strained Ge/Si0.2Ge0.8 heterostructure. This fabrication technique allows hole densities as low as p ∼ 1.1 × 1010cm-2 to be achieved, more than one order of magnitude lower than previously reported in doped Ge/SiGe heterostructures. The power-law exponent of the electron mobility versus density curve, μ ∞ nα, is found to be α ∼ 0.29 over most of the density range, implying that background impurity scattering is the dominant scattering mechanism at intermediate densities in such devices. A charge migration model is used to explain the mobility decrease at the highest achievable densities. The hole effective mass is deduced from the temperature dependence of Shubnikov-de Haas oscillations. At p ∼ 1.0 × 1011cm-2, the effective mass m∗ is ∼0.105 m0, which is significantly larger than masses obtained from modulation-doped Ge/SiGe two-dimensional hole gases.