Publications

Publications / Other Report

MagLIFEP and MagLIFSNL

Harvey-Thompson, Adam J.; wei, mingsheng w.; Glinsky, Michael E.; Weis, Matthew R.; Nagayama, Taisuke N.; Peterson, Kyle J.; Fooks, J.F.; Giraldez, E.G.; Krauland, C.K.; Campbell, M.C.; Davies, J.D.; Peebles, J.P.; Bahr, R.B.; Edgell, D.E.; Stoeckl, C.S.; Turnbull, D.T.; Glebov, V.Yu.; Emig, J.E.; Heeter, R.H.; Strozzi, D.S.

The MagLIF campaign operated by Sandia conducted a total of four shot days in FY17 (one on OMEGA and three on OMEGA-EP) aimed at characterizing the laser heating of underdense plasmas (D2, Ar) at parameters that are relevant to the Magnetized Liner Inertial Fusion (MagLIF) ICF scheme being pursued at Sandia National Laboratories [1] [2]. MagLIF combines fuel preheat, magnetization and pulsed power implosion to significantly relax the implosion velocity and pR required for self-heating. Effective fuel preheat requires coupling several kJ of laser energy into the 10 mm long, underdense (typically ne/nc<0.1) fusion fuel without introducing significant mix. Barriers to achieving this include the presence laser plasma instabilities (LPI) as laser energy is coupled to the initially cold fuel, and the presence of a thin, polyimide laser entrance hole (LEH) foil that the laser must pass through and that can be a significant perturbation.