Publications

Publications / Journal Article

Listening to temperature: Ultrasonic non-destructive identification of material phase and temperature

Jeffrey, Taylor; Jack, David; Moore, David G.

In the chemical transport field, such as petro-chemicals or food processing, there is a need to quantify the spatially varying temperature and phase state of the material within a cylindrical vessel, such as a pipeline, using non-invasive techniques. Using ultrasonic signals, which vary in time-of-flight, intensity, and wave characteristics based on the temperature and phase of a material, an automated technique is presented which can provide a non-axisymmetric map of the phase and temperature inside a cylindrical vessel within a single plane using exclusively information from the through-transmission wave and the external temperature profile. This research demonstrates the approach using an amorphous wax, due to its stable nature and ability to be reheated many times without changing the properties of the wax. Due to its amorphous nature, the wax transitions from a solid to a low-viscosity fluid over a range of temperatures. This behavior is similar to that of a thermoplastic and a slurry experiencing curing. As the spatial temperature within a container of wax increases the time of flight for an ultrasonic signal will change. Results presented indicate the ability of the investigated technique to map the temperature and phase change of the wax based solely on the ultrasonic signals and knowledge of the external temperature on the outer edge of the vessel.