Publications

Publications / Other Report

Limiting noise fraction in PDV measurements

Dolan, Daniel H.

The limiting frequency resolution of a PDV measurement is: σf = $\sqrt\frac{6 η}{fsτ^3π}$ where fs is the sample rate, τ is the analysis time duration, and 11 is the noise fraction. Although T is a strong lever for reducing uncertainty, this parameter must be kept small to preserve time resolution. Consider a PDV measurement with sampled at 80 GS/s and analyzed in 1 ns durations. A 1% noise fraction corresponds to 0.87 MHz of frequency uncertainty, which at 1550 nm works out to 0.68 m/s. A 10% noise fraction has a limiting velocity resolution of about 7 m/s; for comparison, a VISAR system with similar response time (0.5 ns delay, 532 m/s fringe constant) would have a limiting uncertainty of 5-6 m/s. Noise fractions of 10-20% or less are desirable for measurements at this time scale.