Publications
Layer disordering and doping compensation of an intersubband AlGaN/AlN superlattice by silicon implantation
Wierer, J.J.; Allerman, A.A.; Skogen, Erik J.; Tauke-Pedretti, Anna; Alford, Charles A.; Vawter, Gregory A.; Montano, Ines M.
Layer disordering and doping compensation of an Al0.028Ga0.972N/AlN superlattice by implantation are demonstrated. The as-grown sample exhibits intersubband absorption at ∼1.56 μm which is modified when subject to a silicon implantation. After implantation, the intersubband absorption decreases and shifts to longer wavelengths. Also, with increasing implant dose, the intersubband absorption decreases. It is shown that both layer disordering of the heterointerfaces and doping compensation from the vacancies produced during the implantation cause the changes in the intersubband absorption. Such a method is useful for removing absorption in spatially defined areas of III-nitride optoelectronic devices by, for example, creating low-loss optical waveguides monolithically that can be integrated with as-grown areas operating as electro-absorption intersubband modulators.