Publications
Layer-Dependent Bit Error Variation in 3-D NAND Flash under Ionizing Radiation
Kumari, Preeti; Huang, Sijay; Wasiolek, Maryla; Hattar, Khalid M.; Ray, Biswajit
In this article, we studied the total ionization dose (TID) effects on the multilevel-cell (MLC) 3-D NAND flash memory using Co-60 gamma radiation. We found a significant page-to-page bit error variation within a physical memory block of the irradiated memory chip. Our analysis showed that the origin of the bit error variation is the unique vertical layer-dependent TID response of the 3-D NAND. We found that the memory pages located at the upper and lower layers of the 3-D stack show higher fails compared to the middle-layer pages of a given memory block. We confirmed our findings by comparing radiation response of four different chips of the same specification. In addition, we compared the TID response of the MLC 3-D NAND with that of the 2-D NAND chip, which showed less page-to-page variation in bit error within a given memory block. We discuss the possible application of our findings for the radiation-tolerant smart memory controller design.