Publications

Publications / Journal Article

Jamming of bidisperse frictional spheres

Srivastava, Ishan; Clemmer, Joel T.; Silbert, Leonardo E.; Lechman, Jeremy B.; Grest, Gary S.

By generalizing a geometric argument for frictionless spheres, a model is proposed for the jamming density φJ of mechanically stable packings of bidisperse, frictional spheres. The monodisperse, μs-dependent jamming density φJmono(μs) is the only input required in the model, where μs is the coefficient of friction. The predictions of the model are validated by robust estimates of φJ obtained from computer simulations of up to 107 particles for a wide range of μs, and size ratios up to 40:1. Although φJ varies nonmonotonically with the volume fraction of small spheres fs for all μs, its maximum value φJ,max at an optimal fmaxs are both μs dependent. The optimal fmaxs is characterized by a sharp transition in the fraction of small rattler particles.