Publications

Publications / Conference Poster

Investigating Typical Additive Manufacturing Defect Geometries using Physical Vapor Deposition Explosives as a Model System

O'Grady, Caitlin H.; Marquez, Michael P.; Rupper, Stephen G.; Vasiliauskas, Jonathan G.; Knepper, Robert; Son, Steven F.; Tappan, Alexander S.

Additive Manufacturing (AM) techniques are increasingly being utilized for energetic material processes and research. Energetic material samples fabricated using these techniques can develop artifacts or defects during the manufacturing process. In this work, we use Physical Vapor Deposition (PVD) of explosive samples as a model system to investigate the effects of typical AM artifact or defect geometries on detonation propagation. PVD techniques allow for precise control of geometry to simulate typical AM artifacts or defects embedded into explosive samples. This experiment specifically investigates triangular and diamond-shaped artifacts that can result during direct-ink-writing (Robocasting). Samples were prepared with different sizes of voids embedded into the films. An ultra-high-speed framing camera and streak camera were used to view the samples under dynamic shock loading. It was determined that both geometry and size of the defects have a significant impact on the detonation front.