Publications

Publications / Journal Article

Interface reactions responsible for run-out in active brazing: Part 1

Vianco, Paul T.; Walker, Charles A.; De Smet, Dennis J.; Kilgo, Alice C.; McKenzie, Bonnie B.; Grant, Richard P.

The run-out phenomenon was observed in Ag-Cu-Zr active braze joints made between the alumina ceramic and Kovar™ base material. Run-out introduces a significant yield loss by generating functional and/or cosmetic defects in brazements. A prior study identified a correlation between run-out and the aluminum (Al) released by the reduction/oxidation reaction with alumina and aluminum's reaction with the Kovar™ base material. A study was undertaken to understand the fundamental principles of run-out by examining the interface reaction between Ag-xAl filler metals (x = 2,5, and 10 wt-%) and Kovar™ base material. Sessile drop samples were fabricated using brazing temperatures of 965° (T769°F) or 995°C 0823°F) and times of 5 or 20 min. The correlation was made between the degree of wetting and spreading by the sessile drops and the run-out phenomenon. Wetting and spreading increased with Al content (x) of the. Ag-xAl filler metal, but was largely insensitive to the brazing process parameters. The increased Al concentration resulted in higher Al contents of the (Fe, Ni, Co)xAly reaction layer. Run-out was predicted when the filler metal has a locally elevated Al content exceeding 2-5 wt-%. Several mitigation strategies were proposed, based upon these findings.