Publications
Integrated fluid and materials modeling of environmental barrier coatings
Newsome, David; Waxman, Rae; Hoffie, Andreas; Silling, Stewart A.
Environmental Barrier Coatings (EBC) protect ceramic matrix composites from exposure to high temperature moisture present in turbine operation through their dense top coats. However, moisture is able to diffuse and oxidize the Si bond coat to form the Thermally Grown Oxide (TGO), a layer of SiO2 where the incorporation of O causes swelling and stress. At sufficient TGO-based swelling, the EBC will fail due to increased damage such as delamination. A multiscale simulation framework has been developed to link operating conditions of a high-performance turbine to the failure modes of the EBC. Computational fluid dynamics (CFD) simulations of the E3 turbine were performed and compared to prior literature data to demonstrate the fidelity of the Loci/CHEM software to determine the flow conditions on the turbine blade surface. Boundary condition data of pressure and heat flux were then determined with the CFD simulations, providing the temperature at the bond coat. Peridynamics was used to model the microscale TGO growth. A swelling model that links moisture concentration to strain at the TGO due to the volume increase from oxidation was demonstrated, coupling moisture transport to localized strain and directly observing TGO growth and the corresponding damage. This framework is generalized and can be adapted to a range of EBC microstructures and operating conditions.