Publications
InP substrate evaluation by MOVPE growth of lattice matched epitaxial layers
Cederberg, Jeffrey G.; Overberg, Mark E.
InP substrates form the starting point for a wide variety of semiconductor devices. The surface morphology produced during epitaxy depends critically on the starting substrate. We evaluated (1 0 0)-oriented InP wafers from three different vendors by growing thick (5 μm) lattice-matched epilayers of InP, GaInAs, and AlInAs. We assessed the surfaces with differential interference contrast microscopy and atomic force microscopy. Wafers with near singular (1 0 0) orientations produced inferior surfaces in general. Vicinal substrates with small misorientations improved the epitaxial surface for InP dramatically, reducing the density of macroscopic defects while maintaining a low RMS roughness. GaInAs and AlInAs epitaxy step-bunched forming undulations along the miscut direction. Sulfur-doped wafers were considered for singular (1 0 0) and for 0.2° misorientation toward (1 1 0). We found that mound defects observed for InP and GaInAs layers on iron-doped singular wafers were absent for singular sulfur-doped wafers. These observations support the conclusion that dislocation termination at the surface and expansion of the step spiral lead to the macroscopic defects observed. © 2010 Elsevier B.V.