Publications

Publications / Journal Article

Infrared plasmons on heavily-doped silicon

Ginn, James C.; Jarecki, Robert L.; Shaner, Eric A.; Davids, Paul S.

We examine the long-wave infrared (LWIR) optical characteristics of heavily-doped silicon and explore engineering of surface plasmons polaritons (SPP) in this spectral region. Both phosphorus (n-type Si) and boron (p-type Si) implants are evaluated and various cap layers and thermal annealing steps are examined. The optical properties are measured using ellipsometry and fit to a Drude model for the infrared (IR) permittivity. The predicted metallic behavior for Si in the thermal IR and its impact on the spatial confinement and dispersion for surface plasmons is studied. We find that the transverse spatial confinement for a surface plasmon on highly doped Si is strongly sub-wavelength near the plasma edge, and the confinement to the surface is enhanced to greater than 10 × that of the metal confined SPP over the entire LWIR spectrum. © 2011 American Institute of Physics.