Publications
Inference of reaction rate parameters based on summary statistics from experiments
Khalil, Mohammad K.; Chowdhary, K.; Safta, Cosmin S.; Sargsyan, Khachik S.; Najm, H.N.
Bayesian inference and maximum entropy methods were employed for the estimation of the joint probability density for the Arrhenius rate parameters of the rate coefficient of the H2/O2-mechanism chain branching reaction H + O2 → OH + O. A consensus joint posterior on the parameters was obtained by pooling the posterior parameter densities given each consistent data set. Efficient surrogates for the OH concentration were constructed using a combination of Padé and polynomial approximants. Gauss-Hermite quadrature with Gaussian proposal probability density functions for moment computation were used resulting in orders of magnitude speedup in data likelihood evaluation. The consistent data sets resulted in nearly Gaussian conditional parameter probability density functions. The resulting pooled parameter probability density function was propagated through stoichiometric H2-air auto-ignition computations to illustrate the necessity for correlation among the Arrhenius rate parameters of one reaction and across rate parameters of different reactions to be considered.