Publications
In situ stress measurements and their implications in a deep Ohio mine
Bauer, Stephen J.; Munson, D.E.; Hardy, M.P.; Barrix, J.; McGunegle, B.
Stress measurements have been obtained from within the Norton Mine in support of site characterization activities intended to determine the in situ stress field around the mine. These results together with other measurements in the area permit an estimate of the principal stresses at the mine. Based on the most recent measurements, the maximum (σHmax) and minimum (σHmin) stresses acting in the horizontal plane are oriented nearly east-west and north-south, respectively, and their magnitudes are 5330 psi and 4100 psi, respectively. These values are expected to be essentially uniform within a few hundred feet vertically above and below the mine elevation. The stress acting in the vertical direction has a magnitude of 3270 psi at the mine level. This measured vertical stress is related to the overburden weight according to σv=1.26ρgh (where ρ is the overburden density, g acceleration of gravity, and h overburden depth). The measured vertical stress exceeds the stress calculated from overburden weight by a factor of 1.26. These in situ stresses are assumed to be principal stresses and, as a result, the vertical stress is the minimum principal stress. These measurements are generally consistent in magnitude and direction with two other much older sets of measurements taken in the mine and they are consistent with the east-west trend of the regional in situ principal stress direction. The average of all three sets of measurements, recent and old, in the mine give a maximum horizontal stress of 6110 psi, a minimum horizontal stress of 3630, and a vertical stress of 3030 psi. The directions of the mine excavation development, which normally are oriented according to the principal stresses, are also consistent with the current and past measurements.