Publications
In-situ scanning probe microscopy of electrodeposited nickel
Dibble, Dean C.; Kelly, James J.
The performance characteristics and material properties such as stress, microstructure, and composition of nickel coatings and electroformed components can be controlled over a wide range by the addition of small amounts of surface-active compounds to the electroplating bath. Saccharin is one compound that is widely utilized for its ability to reduce tensile stress and refine grain size in electrodeposited nickel. While the effects of saccharin on nickel electrodeposition have been studied by many authors in the past, there is still uncertainty over saccharin's mechanisms of incorporation, stress reduction, and grain refinement. In-situ scanning probe microscopy (SPM) is a tool that can be used to directly image the nucleation and growth of thin nickel films at nanometer length scales to help elucidate saccharin's role in the development and evolution of grain structure. In this study, in-situ atomic force microscopy (AFM) and scanning tunneling microscopy (STM) techniques are used to investigate the effects of saccharin on the morphological evolution of thin nickel films. By observing mono-atomic height nickel island growth with and without saccharin present we conclude that saccharin has little effect on the nickel surface mobility during deposition at low overpotentials where the growth occurs in a layer-by-layer mode. Saccharin was imaged on Au(l11) terraces as condensed patches without resolved packing structure. AFM measurements of the roughness evolution of nickel films up to 1200 nm thick on polycrystalline gold indicate that saccharin initially increases the roughness and surface skewness of the deposit that at greater thickness becomes smoother than films deposited without saccharin. Faceting of the deposit morphology decreases as saccharin concentration increases even for the thinnest films that have 3-D growth.