Publications

Publications / Conference

In-plane magneto-plasmons in grating gated double quantum well field effect transistors

Simmons, J.A.; Wanke, Michael W.; Simmons, J.A.; Lilly, Michael L.; Reno, J.L.

Coupled double quantum well field-effect transistors with a grating gate exhibit a terahertz ({approx}600 GHz) photoconductive response that resonates with standing two dimensional plasma oscillations under the gate and may be the basis for developing a fast, tunable terahertz detector. The application of a precisely aligned in-plane magnetic field produces no detectable change in the device DC conductance but produces a dramatic inversion, growth of the terahertz photoconductive response and frequency shift of the standing plasmon resonances. The frequency shift can be described by a significant mass increase produced by the in-plane field. The mass increase is substantially larger than that calculated from a single well and we presume that a proper treatment of the coupled double quantum well may resolve this discrepancy.