Publications

Publications / Conference

Impurity production and acceleration in CTIX

Buchenauer, D.; Cliff, Miles; Klauser, R.; Horton, R.D.; Howard, S.J.; Brockington, S.J.; Evans, R.W.; Hwang, D.Q.

The Compact Toroid Injection Experiment (CTIX) produces a high density, high velocity hydrogen plasma that maintains its configuration in free space on a MHD resistive time scale. In order to study the production and acceleration of impurities in the injector, several sets of silicon collector probes were exposed to spheromak-like CT's exiting the accelerator. Elemental analysis by Auger Electron Spectroscopy indicated the presence of O, Al, Fe, and Cu in films up to 200 Å thickness (1000 CT interactions). Using a smaller number of CT interactions (10-20), implantation of Fe and Cu was measured by Auger depth profiling. The amount of impurities was found to increase with accelerating voltage and number of CT interactions while use of a solenoidal field reduced the amount. Comparison of the implanted Fe and Cu with TRIM simulations indicated that the impurities were traveling more slowly than the hydrogen CT. © 2009 Elsevier B.V.