Publications
Improving emission uniformity and linearizing band dispersion in nanowire arrays using quasi-aperiodicity
Anderson, P.D.; Koleske, Daniel K.; Povinelli, Michelle L.; Subramania, Ganapathi S.
We experimentally investigate a new class of quasi-aperiodic structures for improving the emission pattern in nanowire arrays. Efficient normal emission, as well as lasing, can be obtained from III-nitride photonic crystal (PhC) nanowire arrays that utilize slow group velocity modes near the G-point in reciprocal space. However, due to symmetry considerations, the emitted far-field pattern of such modes are often 'donut'-like. Many applications, including lighting for displays or lasers, require a more uniform beam profile in the far-field. Previous work has improved far-field beam uniformity of uncoupled modes by changing the shape of the emitting structure. However, in nanowire systems, the shape of nanowires cannot always be arbitrarily changed due to growth or etch considerations. Here, we investigate breaking symmetry by instead changing the position of emitters. Using a quasi-aperiodic geometry, which changes the emitter position within a photonic crystal supercell (2x2), we are able to linearize the photonic bandstructure near the G-point and greatly improve emitted far-field uniformity. We realize the III-nitride nanowires structures using a top-down fabrication procedure that produces nanowires with smooth, vertical sidewalls. Comparison of room-temperature micro-photoluminescence (μ-PL) measurements between periodic and quasi-aperiodic nanowire arrays reveal resonances in each structure, with the simple periodic structure producing a donut beam in the emitted far-field and the quasi-aperiodic structure producing a uniform Gaussian-like beam. We investigate the input pump power vs. output intensity in both systems and observe the simple periodic array exhibiting a non-linear relationship, indicative of lasing. We believe that the quasi-aperiodic approach studied here provides an alternate and promising strategy for shaping the emission pattern of nanoemitter systems.