Publications
Improve Replication of In-service Mechanical Environments
Schoenherr, Tyler F.; Clark, Brett W.; Coffin, Peter C.
Structural dynamic testing is a common method for determining if the design of a component of a system will mechanically fail when deployed into its field environment. To satisfy the test's goal, the mechanical stresses must be replicated. Structural dynamic testing is commonly executed on a shaker table or a shock apparatus such as a drop table or a resonant plate. These apparatus impart a force or load on the component through a test fixture that connects the unit under test to the apparatus. Because the test fixture is directly connected to the unit under test, the fixture modifies the structural dynamics of the system, thus varying the locations and relative levels of stress on the unit under test. This may lead to a false positive or negative indication if the unit under test will fail in its field environment depending on the environment and the test fixture. This body of research utilizes topology optimization using the Plato software to design a test fixture that attaches to the unit under test that matches the dynamic impedance of the next level of assembly. The optimization's objective function is the difference between the field configuration and the laboratory configuration's frequency response functions. It was found that this objective function had many local minima and posed difficulties in converging to an acceptable solution. A case study is presented that uses this objective function and although the results are not perfect, they are quantifiably better than the current method of using a sufficiently stiff fixture.