Publications

Publications / Journal Article

Implicit highly-coupled single-ion Hall-MHD formulation for hybrid particle-in-cell codes

Thoma, Carsten H.; Clark, Robert P.; Welch, Dale R.; Rose, David V.

The rudiments of a particle-based single-fluid two-temperature magnetohydrodynamic (MHD) algorithm have been outlined in Thoma et al. (2013). The extension of this algorithm to include the effect of Hall physics is described in this paper. An implicit leapfrog version of the algorithm, which allows timesteps large compared to the resistive decay time and other relevant timescales, has recently been added to a hybrid particle-in-cell code. In standard MHD the Hall term in the generalized Ohm’s law can often be neglected when the Hall parameter is small. This term must, however, be retained in regimes where it is non-negligible. The retention of displacement current in Maxwell’s equations avoids the numerical difficulties associated with the whistler mode, which are encountered in standard explicit Hall-MHD codes, and allows the algorithm to be incorporated into hybrid particle-in-cell codes, for which particles may migrate from a kinetic to fluid to MHD description based upon local ambient plasma conditions. A highly-coupled implicit Hall-MHD formalism is presented, in which displacement current can either be retained or neglected. Even when displacement current is neglected, the highly-coupled implicit formalism avoids the restrictive timesteps for the whistler mode in explicit Hall-MHD codes. A comparison of numerical and analytic dispersion analysis demonstrates the feasibility of this approach and establishes relevant constraints to assure numerical stability. The implementation of the algorithm is described, and test simulation results in 1D and 2D in both linear and nonlinear regimes are presented.