Publications

Publications / Conference Poster

Implementation of a full-dome, sonar-based finite element geomechanical model to analyze cavern and well stability at the west hackberry SPR site

Sobolik, Steven R.

This report presents computational analyses that simulate the structural response of crude oil storage caverns at the U.S. Strategic Petroleum Reserve (SPR) West Hackberry site in Louisiana. These analyses evaluate the geomechanical behavior of the 22 caverns at the West Hackberry SPR site for the current condition of the caverns and their wellbores, the effect of the caverns on surface facilities, and for potential enlargement related to drawdowns. These analyses represent a significant upgrade in modeling capability, as the following enhancements have been developed: a 6-million-element finite element model of the entire West Hackberry dome; cavern finite element mesh geometries fit to sonar measurements of those caverns; the full implementation of the multi-mechanism deformation (M-D) creep model; and the use of historic wellhead pressures to analyze the past geomechanical behavior of the caverns. The analyses examined the overall performance of the West Hackberry site by evaluating surface subsidence, horizontal surface strains, and axial well strains. This report presents a case study of how large-scale computational analyses may be used in conjunction with site data to make recommendations for safe depressurization and repressurization of oil storage caverns with unusual geometries and close proximity, and for the determination of the number of available drawdowns for a particular cavern.