Publications
Impacts on mechanical strength of chemical reactions induced by hydrous supercritical CO2 in Boise Sandstone
Choens, R.C.; Ilgen, Anastasia G.; Espinoza, D.N.; Aman, Michael; Wilson, Jennifer E.; Dewers, Thomas D.
Geomechanics experiments were used to assess mechanical alteration of Boise Sandstone promoted by reactions with supercritical carbon dioxide (scCO2) and water vapor. During geologic carbon storage, scCO2 is injected into subsurface reservoirs, forming buoyant plumes. At brine-plume interfaces, scCO2 can dissolve into native brines, and water from brines can partition into scCO2, forming hydrous scCO2. This study investigates the effect of hydrous scCO2 on the strength of Boise Sandstone. Samples are first exposed to recirculating hydrous scCO2 for 24 h at 70 °C and 13.8 MPa scCO2 pressure. Samples are reacted with scCO2 with added water contents up to 500 mL. After scCO2 exposure, samples are deformed at room temperature under confining pressures of 3.4, 6.9, and 10.3 MPa. The results demonstrate that hydrous scCO2 induces chemical reactions in Boise Sandstone, with ions migrating from the solid into the hydrous scCO2 phase. At the longer time-scales, these reactions could lead to mechanical weakening in the samples; however, on the scale of our experiments, the strength changes are within sample variability. Because the solubility of water in scCO2 is extremely low (0.008 mol H2O per 1 mol CO2), the mineral dissolution of Boise Sandstone was under 0.002 wt.%. Additionally, mineral grains and pore throats in Boise Sandstone are cemented with quartz, which is not susceptible to dissolution at these conditions. Our results indicate that humidity in scCO2 plumes is unlikely to sustain chemical reactions and induce long term strength changes in quartz cemented sandstones due to resistant mineralogies and low water solubility.