Publications

Publications / Conference Proceeding

Impact of Load Allocation and High Penetration PV Modeling on QSTS-Based Curtailment Studies

Azzolini, Joseph A.; Reno, Matthew J.

The rising penetration levels of photovoltaic (PV) systems within distribution networks has driven considerable interest in the implementation of advanced inverter functions, like autonomous Volt- Var, to provide grid support in response to adverse conditions. Quasi-static time-series (QSTS) analyses are increasingly being utilized to evaluate advanced inverter functions on their potential benefits to the grid and to quantify the magnitude of PV power curtailment they may induce. However, these analyses require additional modeling efforts to appropriately capture the time-varying behavior of circuit elements like loads and PV systems. The contribution of this paper is to study QSTS-based curtailment evaluations with different load allocation and PV modeling practices under a variety of assumptions and data limitations. A total of 24 combinations of PV and load modeling scenarios were tested on a realistic test circuit with 1,379 loads and 701 PV systems. The results revealed that the average annual curtailment varied from the baseline value of 0.47% by an absolute difference of +0.55% to -0.43 % based on the modeling scenario.