Publications

Publications / SAND Report

Impact of Integration Scheme on Performance of Anisotropic Plasticity Models

Lester, Brian T.; Scherzinger, William M.

Given the prevalent role of metals in a variety of industries, schemes to integrate corresponding constitutive models in finite element applications have long been studied. A number of formulations have been developed to accomplish this task; each with their own advantages and costs. Often the focus has been on ensuring the accuracy and numerical stability of these algorithms to enable robust integration. While important, emphasis on these performance metrics may often come at the cost of computational expense potentially neglecting the needs of individual problems. In the current work, the performance of two of the most common integration methods for anisotropic plasticity -- the convex cutting plane (CCP) and closest point projection (CPP) -- across a variety of metrics is assessed; including accuracy and cost. A variety of problems are considered ranging from single elements to large representative simulations including both implicit quasistatic and explicit transient dynamic type responses. The relative performance of each scheme in the different instances is presented with an eye towards guidance on when the different algorithms may be beneficial.