Publications
Imaging the Phase Evolution of the Li-N-H Hydrogen Storage System
White, James L.; Baker, Alexander A.; Marcus, Matthew A.; Snider, Jonathan L.; Wang, Timothy C.; Lee, Jonathan R.; Allendorf, Mark D.; Stavila, Vitalie S.; El Gabaly Marquez, Farid E.
Complex metal hydrides provide high-density hydrogen storage, which is essential for vehicular applications. However, the utility of these materials has been limited by thermodynamic and kinetic barriers present during the dehydrogenation and rehydrogenation processes as new phases form inside parent phases. Better understanding of the mixed-phase mesostructures and their interfaces may assist in improving cyclability. In this work, the evolution of the phases during hydrogenation of lithium nitride and dehydrogenation of lithium amide with lithium hydride are probed with scanning-transmission X-ray microscopy at the nitrogen K edge. With this technique, intriguing core-shell structures were observed in particles of both partially hydrogenated Li3N and partially dehydrogenated LiNH2 + 2 LiH. The potential contributions of both internal hydrogen mobility and interfacial energies on the generation of these structures are discussed.