Publications

Publications / Conference Paper

Identification and Correction of Errors in Pairing AMI Meters and Transformers

Blakely, Logan; Reno, Matthew J.

Distribution system model accuracy is increasingly important and using advanced metering infrastructure (AMI) data to algorithmically identify and correct errors can dramatically reduce the time required to correct errors in the models. This work proposes a data-driven, physics-based approach for grouping residential meters downstream of the same service transformer. The proposed method involves a two-stage approach that first uses correlation coefficient analysis to identify transformers with errors in their customer grouping then applies a second stage, using a linear regression formulation, to correct the errors. This method achieved >99% accuracy in transformer groupings, demonstrated using EPRI's Ckt 5 model containing 1379 customers and 591 transformers.