Publications
Historical case analysis of uranium plume attenuation
Jove Colon, Carlos F.; Brady, Patrick V.; Siegel, Malcolm D.; Lindgren, Eric R.
Groundwater plumes containing dissolved uranium at levels above natural background exist adjacent to uranium ore bodies, at uranium mines, milling locations, and at a number of explosive test facilities. Public health concerns require that some assessment of the potential for further plume movement in the future be made. Reaction-transport models, which might conceivably be used to predict plume movement, require extensive data inputs that are often uncertain. Many of the site-specific inputs are physical parameters that can vary spatially and with time. Limitations in data availability and accuracy means that reaction-transport predictions can rarely provide more than order-of-magnitude bounding estimates of contaminant movement in the subsurface. A more direct means for establishing the limits of contaminant transport is to examine actual plumes to determine if, collectively, they spread and attenuate in a reasonably consistent and characteristic fashion. Here a number of U plumes from ore bodies and contaminated sites were critically examined to identify characteristics of U plume movement. The magnitude of the original contaminant source, the geologic setting, and the hydrologic regime were rarely similar from site to site. Plumes also spanned a vast range of ages, and no complete set of time-series plume analyses based on the spatial extent of U contamination exist for a particular site. Despite the accumulated uncertainties and variabilities, the plume data set gave a clear and reasonably consistent picture of U plume behavior. Specifically, uranium plumes. © 2001 by AEHS.