Publications
High-Temperature Particle Heat Exchanger for sCO2 Power Cycles
Particle receivers are being pursued to provide substantial performance improvements through higher temperatures (>700 °C) for more efficient and cost-effective concentrating solar power (CSP) systems with direct storage. However, the interface between the solar-collection and power-block subsystems - a high-temperature particle/supercritical CO2 (sCO2) heat exchanger - has not been developed. The objective of this project is to design, construct, and test a first-of-a-kind particle-to-sCO2 heat exchanger. This work will enable emerging sCO2 power cycles that have the potential to meet SunShot targets of 50% thermal-to-electric efficiency, dry cooling with 40 °C ambient temperature, and $0.06/kWh for CSP systems. The development of next-generation particle-based systems and methods with potentially high consequences for improved performance and cost savings for CSP applications is an appropriate role for the government.