Publications

Publications / Conference

High-peak-power (>1.2 MW) pulsed fiber amplifier

Farrow, Roger L.; Kliner, Dahv A.V.; Schrader, Paul E.; Hoops, Alexandra A.; Moore, Scan W.; Hadley, G.R.; Schmitt, Randal L.

We report results from Yb-doped fiber amplifiers seeded with two microchip lasers having 0.38-ns and 2.3-ns pulse durations. The shorter duration seed resulted in output pulses with a peak power of > 1.2 MW and pulse energy of 0.67 mJ. Peak power was limited by nonlinear processes that caused breakup and broadening of the pulse envelope as the pump power increased. The 2.3-ns duration seed laser resulted in output pulses with a peak power of >300 kW and pulse energy of > 1.1 mJ. Pulse energies were limited by the onset of stimulated Brillouin scattering and ultimately by internal optical damage (fluences in excess of 400 J/cm 2 were generated). In both experiments, nearly diffraction-limited beam profiles were obtained, with M 2 values of < 1.2. Preliminary results of a pulse-amplification model are in excellent agreement with the experimental results of the amplifiers operating in the low-to-moderate gain-depletion regime.