Publications
Hierarchies of Landau-Lifshitz-Bloch equations for nanomagnets: A functional integral framework
Tranchida, Julien G.; Thibaudeau, Pascal; Nicolis, Stam
We propose a functional integral framework for the derivation of hierarchies of Landau-Lifshitz-Bloch (LLB) equations that describe the flow toward equilibrium of the first and second moments of the magnetization. The short-scale description is defined by the stochastic Landau-Lifshitz-Gilbert equation, under both Markovian or non-Markovian noise, and takes into account interaction terms that are of practical relevance. Depending on the interactions, different hierarchies on the moments are obtained in the corresponding LLB equations. Two closure Ansätze are discussed and tested by numerical methods that are adapted to the symmetries of the problem. Our formalism provides a rigorous bridge between the atomistic spin dynamics simulations at short scales and micromagnetic descriptions at larger scales.