Publications

Publications / Journal Article

Heterojunctions of model CdTe/CdSe mixtures

Van Swol, Frank; Zhou, Xiaowang Z.; Challa, Sivakumar R.; Martin, James E.

We report on the strain behavior of compound mixtures of model group II-VI semiconductors. We use the Stillinger-Weber Hamiltonian that we recently introduced, specifically developed to model binary mixtures of group II- VI compounds such as CdTe and CdSe. We employ molecular dynamics simulations to examine the behavior of thin sheets of material, bilayers of CdTe and CdSe. The lattice mismatch between the two compounds leads to a strong bending of the entire sheet, with about a 0.5 to 1° deflection between neighboring planes. To analyze bilayer bending, we introduce a simple onedimensional model and use energy minimization to find the angle of deflection. The analysis is equivalent to a least-squares straight line fit. We consider the effects of bilayers which are asymmetric with respect to the thickness of the CdTe and CdSe parts. From this we learn that the bending can be subdivided into four kinds depending on the compressive/tensile nature of each outer plane of the sheet. We use this approach to directly compare our findings with experimental results on the bending of CdTe/CdSe rods. To reduce the effects of the lattice mismatch we explore diffuse interfaces, where we mix (i.e. alloy) Te and Se, and estimate the strain response.