Publications

Publications / Other Report

Heavy-Duty Low-Temperature and Diesel Combustion & Heavy-Duty Combustion Modeling (FY 2018 Annual Progress Report)

Musculus, Mark P.

Regulatory drivers and market demands for lower pollutant emissions, lower carbon dioxide emissions, and lower fuel consumption motivate the development of clean and fuel-efficient engine operating strategies. Most current production engines use a combination of both in-cylinder and exhaust emission control strategies to achieve these goals. The emissions and efficiency performance of in-cylinder strategies depend strongly on flow and mixing processes associated with fuel injection. Both heavy- and light-duty engine/vehicle manufacturers use multiple-injection strategies to reduce noise, emissions, and fuel consumption. For both conventional and low-temperature diesel combustion, the state of knowledge and modeling tools for multiple injections are far less advanced than for single-injection strategies. Engine efficiency is limited to some degree by tradeoffs that must be accepted to meet particulate matter (including soot) emissions limits. Recent work on this project has filled some knowledge gaps on soot oxidation with multiple injections, and the current work for Fiscal Year (FY) 2018 addresses knowledge gaps on soot formation for multiple injections. While total in-cylinder soot is readily measured, discerning formation from oxidation is difficult. The FY 2018 experiments are designed to create in-cylinder conditions at the threshold of soot formation, where processes that affect soot formation can be more readily discerned. Soot formation pathways under such conditions are fraught with uncertainties, and soot models significantly overpredict polyaromatic hydrocarbon (PAH) and soot, so experimental data at these conditions will provide much needed data for improvements to PAH and soot models.