Publications
Hamiltonian control design for DC microgrids with stochastic sources and loads with applications
Wilson, David G.; Neely, Jason C.; Cook, Marvin A.; Glover, Steven F.; Young, Joseph; Robinett, Rush D.
To achieve high performance operation of micro-grids that contain stochastic sources and loads is a challenge that will impact cost and complexity. Developing alternative methods for controlling and analyzing these systems will provide insight into tradeoffs that can be made during the design phase. This paper presents a design methodology, based on Hamiltonian Surface Shaping and Power Flow Control (HSSPFC) [1] for a hierarchical control scheme that regulates renewable energy sources and energy storage in a DC micro-grid. Recent literature has indicated that there exists a trade-off in information and power flow and that intelligent, coordinated control of power flow in a microgrid system can modify energy storage hardware requirements. Two scenarios are considered; i) simple two stochastic source with variable load renewable DC Microgrid example and ii) a three zone electric ship with DC Microgrid and varying pulse load profiles. © 2014 IEEE.