Publications

Publications / Conference

Growth and testing of vertical external cavity surface emitting lasers (VECSELs) for intracavity cooling of Yb:YLF

Cederberg, Jeffrey G.; Albrecht, A.R.; Ghasemkhani, M.; Melgaard, S.D.; Sheik-Bahae, M.

Optically-pumped vertical external cavity surface emitting lasers (VECSELs) have unique characteristics that make them attractive for use in intracavity optical cooling of rare earth doped crystals. We present the development of high power VECSELs at 1020 nm for cooling ytterbium-doped yttrium lithium fluoride (Yb:YLF). The VECSEL structures use AlAs/GaAs distributed Bragg reflectors and InGaAs/GaAsP resonant periodic gain epitaxially grown by metal-organic vapor phase epitaxy. To achieve the necessary output power, we investigated thinning the substrate to improve the thermal characteristics. We demonstrated a VECSEL structure that was grown inverted, bonded to the heat sink, and the substrate removed by chemical etching. The inverted structure allows us to demonstrate 15 W output with 27% slope efficiency. Wavelength tuning of 30 nm around 1020 nm was achieved by inserting a birefringent quartz window into the cavity. The window also narrows the VECSEL emission, going from a FWHM of 5 nm to below 0.5 nm at a pump power of 40 W. © 2013 Published by Elsevier B.V.