Publications
Graphene islands on Cu foils: The interplay between shape, orientation, and defects
Wofford, Joseph M.; Nie, Shu N.; McCarty, Kevin F.; Bartelt, Norman C.; Dubon, Oscar D.
We have observed the growth of monolayer graphene on Cu foils using low-energy electron microscopy. On the (100)-textured surface of the foils, four-lobed, 4-fold-symmetric islands nucleate and grow. The graphene in each of the four lobes has a different crystallographic alignment with respect to the underlying Cu substrate. These "polycrystalline" islands arise from complex heterogeneous nucleation events at surface imperfections. The shape evolution of the lobes is well explained by an angularly dependent growth velocity. Well-ordered graphene forms only above ∼790 °C. Sublimation-induced motion of Cu steps during growth at this temperature creates a rough surface, where large Cu mounds form under the graphene islands. Strategies for improving the quality of monolayer graphene grown on Cu foils must address these fundamental defect-generating processes. © 2010 American Chemical Society.