Publications

Publications / Conference Poster

Geometry effects on detonation in vapor-deposited hexanitroazobenzene (HNAB)

Tappan, Alexander S.; Wixom, Ryan R.; Knepper, Robert

Physical vapor deposition is a technique that can be used to produce explosive films with controlled geometry and microstructure. Films of the high explosive hexanitroazobenzene (HNAB) were deposited by vacuum thermal evaporation. HNAB deposits in an amorphous state that crystallizes over time into a polycrystalline material with high density and a consistent porosity distribution. In previous work, we evaluated detonation critical thickness in HNAB films in an effectively infinite slab geometry with insignificant side losses. In this work, the effect of geometry on detonation failure was investigated by performing experiments on films with different thicknesses, while also changing lateral dimensions such that side losses became significant. The experimental failure thickness was determined to be 75.5 μm and 71.6 μm, for 400 μm and 1600 μm wide HNAB lines, respectively. It follows from this that the minimum width to achieve detonation behavior representing an infinite slab configuration is greater than 400 μm.