Publications
GaAsSb/InGaAs type-II quantum wells for long-wavelength lasers on GaAs substrates
Klem, John F.; Spahn, Olga B.; Kurtz, S.R.; Fritz, I.J.; Choquette, K.D.
The authors have investigated the properties of GaAsSb/InGaAs type-II bilayer quantum well structures grown by molecule beam epitaxy for use in long-wavelength lasers on GaAs substrates. Structures with layer, strains and thicknesses designed to be thermodynamically stable against dislocation formation exhibit room-temperature photoluminescence at wavelengths as long as 1.43 {mu}m. The photoluminescence emission wavelength is significantly affected by growth temperature and the sequence of layer growth (InGaAs/GaAsSb vs GaAsSb/InGaAs), suggesting that Sb and/or In segregation results in non-ideal interfaces under certain growth conditions. At low injection currents, double heterostructure lasers with GaAsSb/InGaAs bilayer quantum well active regions display electroluminescence at wavelengths comparable to those obtained in photoluminescence, but at higher currents the electroluminescence shifts to shorter wavelengths. Lasers have been obtained with threshold current densities as low as 120 A/cm{sup 2} at 1.17 {mu}m, and 2.1 kA/cm{sup 2} at 1.21 {mu}m.