Publications

Publications / Journal Article

Focused ion beam deposited carbon-platinum nanowires for cryogenic resistive thermometry

Blagg, Kirsten; Allen, Portia; Lu, Tzu-Ming L.; Lilly, Michael L.; Singh, Meenakshi

The study of thermal effects, both classical and quantum, at cryogenic temperatures requires the use of on-chip, local, high-sensitivity thermometry. Carbon-platinum composites fabricated using focused ion beam (FIB) assisted deposition form a granular structure which is shown in this study to be uniquely suited for this application. Carbon-platinum thermometers deposited using a 24 pA ion beam current have high sensitivities below 1 K, comparable to the best cryogenic thermometers. In addition, these thermometers can be accurately placed to within 10s of nanometers on the chip using a mask-free process. They also have a weak magnetic field dependence, < 3% change in resistance with applied magnetic fields from 0 to 8 T. Finally, these thermometers are integrable into a variety of nanoscale devices due to the existing wide spread use of FIB.